Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38604686

RESUMO

OBJECTIVE: To investigate the effect of LAG-3 deficiency (LAG3-/-) on natural killer (NK) cell function and hepatic fibrosis in mice infected with Echinococcus multilocularis. METHODS: C57BL/6 mice, each weighing (20 ± 2) g, were divided into the LAG3-/- and wild type (WT) groups, and each mouse in both groups was inoculated with 3 000 E. multilocularis protoscoleces via the hepatic portal vein. Mouse liver and spleen specimens were collected 12 weeks post-infection, sectioned and stained with sirius red, and the hepatic lesions and fibrosis were observed. Mouse hepatic and splenic lymphocytes were isolated, and flow cytometry was performed to detect the proportions of hepatic and splenic NK cells, the expression of CD44, CD25 and CD69 molecules on NK cell surface, and the secretion of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin (IL)-4, IL-10 and IL-17A. RESULTS: Sirius red staining showed widening of inflammatory cell bands and hyperplasia of fibrotic connective tissues around mouse hepatic lesions, as well as increased deposition of collagen fibers in the LAG3-/-group relative to the WT group. Flow cytometry revealed lower proportions of mouse hepatic (6.29% ± 1.06% vs. 11.91% ± 1.85%, P < 0.000 1) and splenic NK cells (4.44% ± 1.22% vs. 5.85% ± 1.10%, P > 0.05) in the LAG3-/- group than in the WT group, and the mean fluorescence intensity of CD44 was higher on the surface of mouse hepatic NK cells in the LAG3-/- group than in the WT group (t = -3.234, P < 0.01), while no significant differences were found in the mean fluorescence intensity of CD25 or CD69 on the surface of mouse hepaticNK cells between the LAG3-/- and WT groups (both P values > 0.05). There were significant differences between the LAG3-/- and WT groups in terms of the percentages of IFN-γ (t = -0.723, P > 0.05), TNF-α (t = -0.659, P > 0.05), IL-4 (t = -0.263, P > 0.05), IL-10 (t = -0.455, P > 0.05) or IL-17A secreted by mouse hepatic NK cells (t = 0.091, P > 0.05), and the percentage of IFN-γ secreted by mouse splenic NK cells was higher in the LAG3-/- group than in the WT group (58.40% ± 1.64% vs. 50.40% ± 4.13%; t = -4.042, P < 0.01); however, there were no significant differences between the two groups in terms of the proportions of TNF-α (t = -1.902, P > 0.05), IL-4 (t = -1.333, P > 0.05), IL-10 (t = -1.356, P > 0.05) or IL-17A secreted by mouse splenic NK cells (t = 0.529, P > 0.05). CONCLUSIONS: During the course of E. multilocularis infections, LAG3-/- promotes high-level secretion of IFN-γ by splenic NK cells, which may participate in the reversal the immune function of NK cells, resulting in aggravation of hepatic fibrosis.


Assuntos
Echinococcus multilocularis , Interleucina-10 , Animais , Camundongos , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Echinococcus multilocularis/genética , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Interferon gama/genética , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Cirrose Hepática/genética
2.
Front Immunol ; 15: 1358361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605966

RESUMO

Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by the infection of Echinococcus multilocularis (E. multilocularis) larvae. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) produces inhibitory signals and induces T cell exhaustion, thereby inhibiting the parasiticidal efficacy of the liver immune system. Therefore, the purpose of this study is to explore how T-cell exhaustion contributes to AE and whether blocking CTLA-4 could reverse T cell exhaustion. Here we discovered that the expression of CTLA-4 was increased in the infiltrating margin around the lesion of the liver from AE patients by using western blot and immunohistochemistry assay. Multiple fluorescence immunohistochemistry identified that CTLA-4 and CD4/CD8 molecules were co-localized. For in vitro experiments, it was found that the sustained stimulation of E. multilocularis antigen could induce T cell exhaustion, blocking CTLA-4-reversed T cell exhaustion. For in vivo experiments, the expression of CTLA-4 was increased in the liver of E. multilocularis-infected mice, and the CTLA-4 and CD4/CD8 molecules were co-localized. Flow cytometry analysis demonstrated that the percentages of both CD4+ T cells and CD8+ T cells in the liver and peripheral blood were significantly increased and induced T exhaustion. When the mice were treated with anti-CTLA-4 antibodies, the number and weight of the lesions decreased significantly. Meanwhile, the flow cytometry results suggested that blocking CTLA-4 could effectively reverse T cell exhaustion and reactivate immune function. Our work reveals that blocking CTLA-4 could effectively reverse the T cell exhaustion caused by E. multilocularis and could be used as a novel target for the treatment of AE.


Assuntos
Equinococose Hepática , Equinococose , Echinococcus multilocularis , Humanos , Camundongos , Animais , Equinococose Hepática/parasitologia , Antígeno CTLA-4 , Exaustão das Células T , Linfócitos T CD8-Positivos
3.
Immun Inflamm Dis ; 12(4): e1236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652009

RESUMO

OBJECTIVE: To explore the role of miRNA in liver damage caused by Echinococcus multilocularis infection. METHODS: Six female C57BL mice were randomly divided into two groups, the control group and the infection group. Mice in the control group were injected with 100 µL PBS through the hepatic portal vein, and mice in the infection group were infected with E. multilocularis via the hepatic portal vein to establish a mouse model of infection. Small RNA sequencing was performed for detecting the expression of miRNAs in the liver of mice infected with 2000 E. multilocularis after 3 months of infection, screen out miRNAs related to liver damage, and verify by RT-PCR. RESULTS: Seventy-one differentially expressed miRNAs were found in the liver in comparison with control, and a total of 36 mouse miRNAs with |FC| >0.585 were screened out, respectively. In addition, Targetscan (V5.0) and miRanda (v3.3a) software were used to predict differential miRNAs target genes and functional enrichment of target genes. Functional annotation showed that "cytokine-cytokine interaction," "positive regulation of cytokine production," "inflammatory response," and "leukocyte activation" were enriched in the liver of E. multilocularis-infected mice. Moreover, the pathways "human cytomegalovirus infection," "cysteine and methionine metabolism," "Notch signaling pathway," and "ferroptosis" were involved in liver disease. Furthermore, four miRNAs (mmu-miR-30e-3p, mmu-miR-203-3p, mmu-miR-125b-5p, and mmu-miR-30c-2-3p) related to liver injury were screened and verified. CONCLUSION: This study revealed that the expression profiling of miRNAs in the livers was changed after E. multilocularis infection, and improved our understanding of the transcriptomic landscape of hepatic echinococcosis in mice.


Assuntos
Echinococcus multilocularis , Fígado , Camundongos Endogâmicos C57BL , MicroRNAs , Veia Porta , Animais , MicroRNAs/genética , Camundongos , Feminino , Veia Porta/patologia , Veia Porta/parasitologia , Echinococcus multilocularis/genética , Fígado/parasitologia , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Equinococose/patologia
4.
Int Immunopharmacol ; 131: 111808, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457984

RESUMO

The pathogen of alveolar echinococcosis (AE) is Echinococcus multilocularis (E. multilocularis), which has the characteristics of diffuse infiltration and growth and has a high mortality rate. At present, the role of macrophages in AE infection has attracted more and more attention, but the new biomarkers and polarization mechanisms of macrophages are rarely studied. In this study, CIBERSORT and WGCNA algorithms were used to establish a weighted gene co-expression network, and MTLN was identified as a biological marker of M2-type macrophages, which participated in energy metabolism of macrophages and mediated inflammatory response, but the role of MTLN in AE was not studied. In this study, liver tissue samples from AE patients were collected and immunofluorescence co-localization showed the relationship between MTLN and macrophage distribution. E. multilocularis infected mouse model was established to analyze the expression of MTLN, liver fibrosis, and inflammatory reaction after E. multilocularis infection. The cell experiment simulated the liver microenvironment of E. multilocularis infected human body and analyzed the expression of MTLN by QRT-PCR and western blot in vitro. The data showed that liver fibrosis occurred in AE patients, and MTLN was activated near the focus. After E. multilocularis infected mice, the expression of MTLN increased with time. In the cell experiment, after the antigen of E. multilocularis protoscolex stimulated normal liver cells, the expression of MTLN increased 48 h, at this time, M2 was up-regulated and M1 was down-regulated. Therefore, MTLN may be the key gene to regulate the polarization of M2 macrophages and cause fibrosis.


Assuntos
Equinococose , Echinococcus multilocularis , Humanos , Camundongos , Animais , Equinococose/genética , Hepatócitos , Cirrose Hepática , Echinococcus multilocularis/genética
6.
Infect Genet Evol ; 119: 105581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432594

RESUMO

Alveolar echinococcosis (AE), caused by Echinococcus multilocularis, is an important zoonotic disease. Yili Prefecture in Xinjiang is endemic for AE, however the molecular variability of E. multilocularis in this region is poorly understood. In this study, 127 samples were used for haplotypes analysis, including 79 tissues from humans, 43 liver tissues from small rodents, and 5 fecal samples from dogs. Genetic variability in E. multilocularis was studied using complete sequences of the mitochondrial (mt) genes of cytochrome b (cob), NADH dehydrogenase subunit 2 (nad2), and cytochrome c oxidase subunit 1 (cox1), using a total of 3558 bp per sample. The Asia haplotype 2 (A2) was the dominant haplotype, with 72.15% (57/79) prevalence in humans, 2.33% (1/43) in small rodents, and 80.00% (4/5) in dogs, followed by A5, the second most common haplotype, which infected 27.91% (12/43) small rodents. Haplotype network analysis showed that all haplotypes clustered together with the Asian group. Pairwise fixation index (FST) values showed lower level of genetic differentiation between different regions within the country. Compared with the sequences of E. multilocularis from North America and Europe, all concatenated sequences isolated from Yili Prefecture were highly differentiated and formed a single population. The A2 haplotype, analyzed using the cob, nad2, and cox1 genes of E. multilocularis, is the predominant variant in humans and dogs in Yili Prefecture.


Assuntos
Equinococose , Echinococcus multilocularis , Humanos , Cães , Animais , Echinococcus multilocularis/genética , Haplótipos , Equinococose/epidemiologia , Equinococose/veterinária , Zoonoses , Roedores , Citocromos b/genética
7.
Sci Rep ; 14(1): 5066, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429417

RESUMO

Human alveolar echinococcosis is increasingly documented in Alberta, Canada. Its causative agent, Echinococcus multilocularis (Em), can be transmitted to humans by infected dogs. We assessed the prevalence and associated risk factors for Em infections in domestic dogs in Calgary, Alberta, Canada. In this cross-sectional study that coupled collection and assessment of dog feces with a survey on potential risk factors, 13 of 696 (Bayesian true prevalence, 2.4%; 95% CrI: 1.3-4.0%) individual dogs' feces collected during August and September 2012 were qPCR positive for Em. Sequencing two of these cases indicated that both were from the same Em European strain responsible for human infections in Alberta. Likelihood of intestinal Em was 5.6-times higher in hounds than other breeds, 4.6-times higher in dogs leashed at dog parks than those allowed off-leash, 3.1-times higher in dogs often kept in the backyard during spring and summer months than those rarely in the yard, and 3.3-times higher in dogs living in neighbourhoods bordering Bowmont park than those in other areas of Calgary. This situation warrants surveillance of dog infections as a preventative measure to reduce infections in North America.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Cães , Humanos , Echinococcus multilocularis/genética , Alberta/epidemiologia , Estudos Transversais , Teorema de Bayes , Fatores de Risco , América do Norte
8.
Angew Chem Int Ed Engl ; 63(13): e202319489, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308123

RESUMO

Alveolar echinococcosis (AE) is a zoonotic parasitic disease, resulting from being infected with the metacestode larvae of the tapeworm Echinococcus multilocularis (E. multilocularis). Novel prophylactic and therapeutic interventions are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. Bioengineered nano cellular membrane vesicles are widely used for displaying the native conformational epitope peptides because of their unique structure and biocompatibility. In this study, four T-cells and four B-cells dominant epitope peptides of E. multilocularis with high immunogenicity were engineered into the Vero cell surface to construct a membrane vesicle nanovaccine for the treatment of AE. The results showed that the nanovesicle vaccine can efficiently activate dendritic cells, induce specific T/B cells to form a mutually activated circuit, and inhibit E. multilocularis infection. This study presents for the first time a nanovaccine strategy that can completely eliminate the burden of E. multilocularis.


Assuntos
Equinococose , Echinococcus multilocularis , Vacinas , Animais , Imunoterapia , 60547 , Epitopos , Peptídeos
9.
Vet Parasitol Reg Stud Reports ; 48: 100982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316509

RESUMO

Echinococcus multilocularis, a cestode with zoonotic potential, is now known to have a high prevalence in wild canid definitive hosts of southern Ontario. The distribution of E. multilocularis across this region in red foxes (Vulpes vulpes) and coyotes (Canis latrans) is widespread yet heterogenous. In contrast, confirmed diagnoses of E. multilocularis in wild free-ranging intermediate hosts within Ontario are currently limited to a single eastern chipmunk (Tamias striatus). These findings prompted ongoing surveillance efforts in intermediate host species, primarily rodents. Our report describes the results of passive surveillance through wildlife carcass submissions to the Canadian Wildlife Health Cooperative (CWHC) and targeted active sampling of small mammal species from 2018 to 2023; a second and third eastern chipmunk were found to be infected with E. multilocularis. However, these were the only occurrences from surveillance efforts which collectively totaled 510 rodents and other small mammals. Continued surveillance for E. multilocularis in intermediate hosts is of high importance in light of the recent emergence of this parasite in Ontario.


Assuntos
Coiotes , Equinococose , Echinococcus multilocularis , Doenças dos Roedores , Animais , Ontário/epidemiologia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/diagnóstico , Animais Selvagens , Sciuridae , Raposas/parasitologia , Doenças dos Roedores/epidemiologia
10.
Front Cell Infect Microbiol ; 14: 1335946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333034

RESUMO

The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.


Assuntos
Echinococcus multilocularis , Parasitos , Animais , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Parasitos/genética , Larva , Perfilação da Expressão Gênica , Técnicas de Cultura de Células , Células-Tronco , Mamíferos/genética
11.
Int J Parasitol ; 54(5): 233-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246405

RESUMO

The cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a fatal zoonotic parasitic disease of the northern hemisphere. Red foxes are the main reservoir hosts and, likely, the main drivers of the geographic spread of the disease in Europe. Knowledge of genetic relationships among E. multilocularis isolates at a European scale is key to understanding the dispersal characteristics of E. multilocularis. Hence, the present study aimed to describe the genetic diversity of E. multilocularis isolates obtained from different host species in 19 European countries. Based on the analysis of complete nucleotide sequences of the cob, atp6, nad2, nad1 and cox1 mitochondrial genes (4,968 bp), 43 haplotypes were inferred. Four haplotypes represented 62.56 % of the examined isolates (142/227), and one of these four haplotypes was found in each country investigated, except Svalbard, Norway. While the haplotypes from Svalbard were markedly different from all the others, mainland Europe appeared to be dominated by two main clusters, represented by most western, central and eastern European countries, and the Baltic countries and northeastern Poland, respectively. Moreover, one Asian-like haplotype was identified in Latvia and northeastern Poland. To better elucidate the presence of Asian genetic variants of E. multilocularis in Europe, and to obtain a more comprehensive Europe-wide coverage, further studies, including samples from endemic regions not investigated in the present study, especially some eastern European countries, are needed. Further, the present work proposes historical causes that may have contributed to shaping the current genetic variability of E. multilocularis in Europe.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Echinococcus multilocularis/genética , Filogenia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/parasitologia , Europa (Continente)/epidemiologia , Zoonoses , Raposas/parasitologia , Variação Genética
12.
PLoS Negl Trop Dis ; 18(1): e0011876, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198452

RESUMO

Human alveolar echinococcosis (AE) is a serious parasitic disease caused by larval stages of Echinococcus multilocularis. Between January 2000 and October 2023, 137 AE cases were confirmed in Slovakia. The average annual incidence increased from 0.031 per 100,000 inhabitants between 2000 and 2011, to an average of 0.187 since 2012, i.e. about six times. Among patients, 45.3% were men and 54.7% were women; the mean age at the time of diagnosis was 52.8 years. Most cases were diagnosed in the age groups 51-60 years and 61-70 years (33 cases each), and eight patients fell into the age category ≤ 20 years. To better recognize the gene diversity in clinical samples, metacestodes from 21 patients collected between 2013 and 2021 were subjected to DNA sequencing of four mitochondrial genes. Using concatenated sequences of cob (603 bp), nad2 (882 bp) and cox1 (789 bp) gene fragments, 14 isolates (66.7%) were assigned to the European E5 profile of E. multilocularis, two isolates (9.5%) to the E5a subtype, four isolates (19%) to the E4 profile, and one isolate (4.8%) to haplogroup E1/E2. The E5-type profiles and E4 profiles were distributed throughout the country, whereas the E1/E2 profile was found in the patient from western Slovakia. According to the data obtained and GenBank sequences, the E5-type dispersal is so far limited to central-eastern Europe and the variant seems to be indigenous to that region. The admixture with the haplotypes E4 and E1/E2 could have taken place from a historical endemic focus during the fox expansion in the last decades. By employing the nad1 fragment, a typical European haplotype was observed in all 21 resolved Slovak samples. The acceleration in the AE incidence in the last decade suggests the emergence of the disease and the need for further research on human and animal isolates.


Assuntos
Equinococose , Echinococcus multilocularis , Masculino , Animais , Humanos , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Adulto , Echinococcus multilocularis/genética , Eslováquia/epidemiologia , Equinococose/epidemiologia , Equinococose/parasitologia , Variação Genética
14.
Parasitology ; 151(1): 84-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018240

RESUMO

Recently, there have been epidemics of human cystic echinococcosis (CE) and alveolar echinococcosis (AE) in Kyrgyzstan. This study investigated 2 districts for the presence of Echinococcus granulosus s.l. and Echinococcus multilocularis eggs; species identity was confirmed by polymerase chain reaction in dog feces and the level of environmental contamination with parasite eggs in 2017­2018 was also investigated. In the Alay district 5 villages with a high reported annual incidence of AE of 162 cases per 100 000 and 5 villages in the Kochkor district which had a much lower incidence of 21 cases per 100 000 were investigated. However, the proportion of dog feces containing E. granulosus s.l. eggs was ~4.2 and ~3.5% in Alay and Kochkor respectively. For E. multilocularis, the corresponding proportions were 2.8 and 3.2%. Environmental contamination of Echinococcus spp. eggs was estimated using the McMaster technique for fecal egg counts, weight and density of canine feces. The level of environmental contamination with E. multilocularis eggs was similar at 4.4 and 5.0 eggs per m2 in Alay and Kochkor respectively. The corresponding values for E. granulosus s.l. were 8.3 and 7.5 eggs per m2. There was no association between village or district level incidence of human AE or CE and the proportion of dog feces containing eggs of Echinococcus spp. or the level of environmental contamination. Increased contamination of taeniid eggs occured in the autumn, after the return of farmers with dogs from summer mountain pastures.


Assuntos
Doenças do Cão , Equinococose , Echinococcus granulosus , Echinococcus multilocularis , Taenia , Animais , Cães , Humanos , Quirguistão/epidemiologia , Fezes/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia
15.
Acta Trop ; 250: 107083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070722

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) can cause severe liver injury and be fatal if left untreated. Currently, there are no effective therapeutic options for AE-induced liver injury. Therefore, by exploring the changes of gene proteins in mice with damaged liver, we attempted to identify the key molecules of liver damage, and provide data that will enable the development of drugs targeting hepatic AE. METHODS: BALB/c mice were inoculated with protoscoleces via the hepatic portal vein. Three months later, B-ultrasound examination and Hematoxylin-eosin (H&E) staining were used to confirm liver damage in mice. RNA sequencing and Liquid chromatography-mass spectrometry (LC-MS) were used to screen differentially expressed molecules associated with liver damage through bioinformatics, and Quantitative Real-Time PCR (qRT-PCR) was used to verify their expression. RESULTS: B-ultrasound examination showed liver lesions in the infected group, and H&E staining showed liver inflammation, fibrosis and liver necrosis. RNA sequencing and LC-MS results showed changes in the levels of more than 1000 genes and proteins, with upregulation of immune and inflammation pathways. By contrast, the downregulated genes and proteins were mostly involved in various metabolic reactions. Correlation analysis was conducted between the transcriptome data and proteome data. The results revealed 240 differentially expressed genes, of which 192 were upregulated, and 48 were downregulated. Many of these genes were involved in metabolic reactions, such as Catalase (Cat), fatty acid synthase (Fasn), and IL-16 genes, which may have relevance to liver injury. The results of qRT-PCR were consistent with those of bioinformatics analysis. CONCLUSIONS: The mechanisms of liver injury in mice infected with Echinococcus multilocularis are complex, involving abnormal metabolism, oxidative stress, inflammatory response, and many other factors. This study provides the data for preliminary exploration for the development of targeted therapies against AE.


Assuntos
Equinococose , Echinococcus multilocularis , Hepatopatias , Camundongos , Animais , Fígado , Echinococcus multilocularis/genética , Inflamação , Transcriptoma
16.
Sci Rep ; 13(1): 21176, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040783

RESUMO

The cestode, Echinococcus multilocularis, is one of the most threatening parasitic challenges in the European Union. Despite the warming climate, the parasite intensively spread in Europe's colder and warmer regions. Little is known about the expansion of E. multilocularis in the Balkan region. Ordinary least squares, geographically weighted and multi-scale geographically weighted regressions were used to detect global and local drivers that influenced the prevalence in red foxes and golden jackals in the southwestern part of Hungary. Based on the study of 391 animals, the overall prevalence exceeded 18% (in fox 15.2%, in jackal 21.1%). The regression models revealed that the wetland had a global effect (ß = 0.391, p = 0.006). In contrast, on the local scale, the mean annual precipitation (ß = 0.285, p = 0.008) and the precipitation seasonality (ß = - 0.211, p = 0.014) had statistically significant effects on the infection level. The geospatial models suggested that microclimatic effects might compensate for the disadvantages of a warmer Mediterranean climate. This study calls attention to fine-scale analysis and locally acting environmental factors, which can delay the expected epidemic fade-out. The findings of our study are suggested to consider in surveillance strategies.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Península Balcânica/epidemiologia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/parasitologia , Raposas , Prevalência
17.
Parasit Vectors ; 16(1): 425, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980538

RESUMO

BACKGROUND: We describe the spatial distribution of Echinococcus multilocularis in its main definitive host, the red fox, and the distribution of human cases of alveolar echinococcosis (AE) within a highly endemic focus in southern Germany (13.7-19.9/100,000 in 1992-2018). Human cases were unequally distributed within the endemicity focus. The purpose of the study was to test whether this is reflected in the small-scale distribution of E. multilocularis in foxes. METHODS: Three areas with contrasting numbers of human cases were selected within the counties of Ravensburg and Alb-Donau, Baden-Württemberg, Germany. From 2018 to 2020, a total of 240 fox carcasses were obtained from traditional hunters in these areas. Carcasses were necropsied and examined for the presence of intestinal helminths. The statistical analysis was performed with SAS version 9.4, and the geo-mapping with QGIS version 3.16.0 Hannover. RESULTS: The prevalence of E. multilocularis in foxes was 44/106 (41.5%) in area I (commune Leutkirch and environs), 30/59 (50.8%) in area II (commune Isny and environs), and 31/75 (41.3%) in area III (commune Ehingen and environs). From 1992 to 2018, a total of nine human cases of alveolar echinococcosis were recorded in area I, five cases were recorded in study area III, and no cases were recorded in area II. No statistically significant differences between the areas were observed (P > 0.05) for intestinal infections with E. multilocularis, and no apparent spatial correlation with the small-scale distribution of human cases was found. Concerning other zoonotic helminths, Toxocara spp. were equally common, with prevalence of 38.7%, 47.4% and 48.0%, respectively, while the frequency of Alaria alata varied among the study areas (0.0-9.4%), probably reflecting the specific habitat requirements for the establishment of its complex life cycle. CONCLUSIONS: Echinococcus multilocularis is highly prevalent in foxes in all the studied areas. The varying number of human AE cases within these areas should therefore be caused by factors other than the intensity of parasite transmission in foxes.


Assuntos
Equinococose , Echinococcus multilocularis , Enteropatias Parasitárias , Animais , Humanos , Raposas/parasitologia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/parasitologia , Prevalência
18.
Infect Genet Evol ; 116: 105531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992792

RESUMO

The genetic diversity of Echinococcus multilocularis (E. multilocularis) specimens isolated from patients with alveolar echinococcosis (AE), is a major field of investigation to correlate with sources of infection, clinical manifestations and prognosis of the disease. Molecular markers able to distinguish samples are commonly used worldwide, including the EmsB microsatellite. Here, we report the use of the EmsB microsatellite polymorphism data mining for the retrospective typing of Belgian specimens of E. multilocularis infecting humans. A total of 18 samples from 16 AE patients treated between 2006 and 2021 were analyzed through the EmsB polymorphism. Classification of specimens was performed through a dendrogram construction in order to compare the similarity among Belgian samples, some human referenced specimens on the EWET database (EmsB Website for the Echinococcus Typing) and previously published EmsB profiles from red foxes circulating in/near Belgium. According to a comparison with human European specimens previously genotyped in profiles, the 18 Belgian ones were classified into three EmsB profiles. Four specimens could not be assigned to an already known profile but some are near to EWET referenced samples. This study also highlights that some specimens share the same EmsB profile with profiles characterized in red foxes from north Belgium, the Netherlands, Luxembourg and French department near to the Belgian border. Furthermore, Belgian specimens present a genetic diversity and include one profile that don't share similarities with the ones referenced in the EWET database. However, at this geographical scale, there is no clear correlation between EmsB profiles and geographical location. Further studies including additional clinical samples and isolates from foxes and rodents of south Belgium are necessary to better understand the spatial and temporal circumstances of human infections but also a potential correlation between EmsB profiles and parasite virulence.


Assuntos
Echinococcus multilocularis , Animais , Humanos , Bélgica/epidemiologia , Echinococcus multilocularis/genética , Raposas/parasitologia , Estudos Retrospectivos , Variação Genética , Repetições de Microssatélites
19.
Parasit Vectors ; 16(1): 407, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936208

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is a lethal zoonosis caused by the fox tapeworm Echinococcus multilocularis. The disease is difficult to treat, and an effective therapeutic drug is urgently needed. Echinococcus multilocularis-associated angiogenesis is required by the parasite for growth and metastasis; however, whether antiangiogenic therapy is effective for treating AE is unclear. METHODS: The in vivo efficacy of sunitinib malate (SU11248) was evaluated in mice by secondary infection with E. multilocularis. Enzyme-linked immunosorbent assays (ELISAs) were used to evaluate treatment effects on serum IL-4 and vascular endothelial growth factor A (VEGFA) levels after SU11248 treatment. Gross morphological observations and immunohistochemical staining were used to evaluate the impact of SU11248 on angiogenesis and the expression of pro-angiogenic factors VEGFA and VEGF receptor 2 (VEGFR2) in the metacestode tissues. Furthermore, the anthelmintic effects of SU11248 were tested on E. multilocularis metacestodes in vitro. The effect of SU11248 on the expression of VEGFA, VEGFR2, and phosphorylated VEGFR2 (p-VEGFR2) in liver cells infected with protoscoleces in vitro was detected by western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The influence of SU11248 on endothelial progenitor cell (EPC) proliferation and migration was determined using CCK8 and transwell assays. RESULTS: In vivo, SU11248 treatment markedly reduced neovascular lesion formation and substantially inhibited E. multilocularis metacestode growth in mice. Further, it exhibited high anti-hydatid activity as efficiently as albendazole (ABZ), and the treatment resulted in reduced protoscolex development. In addition, VEGFA, VEGFR2, and p-VEGFR2 expression was significantly decreased in the metacestode tissues after SU11248 treatment. However, no effect of SU11248 on serum IL-4 levels was observed. In vitro, SU11248 exhibited some anthelmintic effects and damaged the cellular structure in the germinal layer of metacestodes at concentrations below those generally considered acceptable for treatment (0.12-0.5 µM). Western blotting, RT-qPCR, and ELISA showed that in co-cultured systems, only p-VEGFR2 levels tended to decrease with increasing SU11248 concentrations. Furthermore, SU11248 was less toxic to Reuber rat hepatoma (RH) cells and metacestodes than to EPCs, and 0.1 µM SU11248 completely inhibited EPC migration to the supernatants of liver cell and protoscolex co-cultures. CONCLUSIONS: SU11248 is a potential candidate drug for the treatment of AE, which predominantly inhibits parasite-induced angiogenesis. Host-targeted anti-angiogenesis treatment strategies constitute a new avenue for the treatment of AE.


Assuntos
Anti-Helmínticos , Echinococcus multilocularis , Camundongos , Animais , Sunitinibe/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Interleucina-4 , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
20.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(4): 398-406, 2023 Sep 19.
Artigo em Chinês | MEDLINE | ID: mdl-37926477

RESUMO

Echinococcosis is a zoonotic parasitic disease caused by infection with Echinococcus species. As the drug of first choice for treatment of echinococcosis, albendazole suffers from problems of large doses and remarkable adverse reactions in clinical therapy. Development of novel drugs against echinococcosis is of urgent need. Recently, great advances have been achieved in the research on traditional Chinese medicine for treatment of echinococcosis. This review summarizes the progress of researches on traditional Chinese medicine for treatment of echinococcosis, aiming to provide insights into development of anti-echinococcosis drugs.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Humanos , Medicina Tradicional Chinesa , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Albendazol/uso terapêutico , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...